Approximated computing for low power neural networks
نویسندگان
چکیده
منابع مشابه
Implementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملHYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks
In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...
متن کاملTowards a Low Power Hardware Accelerator for Deep Neural Networks
In this project, we take a first step towards building a low power hardware accelerator for deep learning. We focus on RBM based pretraing of deep neural networks and show that there is significant robustness to random errors in the pre-training, training and testing phase of using such neural networks. We propose to leverage such robustness to build accelerators using low power but possibly un...
متن کاملAdiabatic superconducting cells for ultra-low-power artificial neural networks
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
متن کاملLow-Power Scientific Computing
Introduction: Scientists and mathematicians are increasingly realizing the computational benefits of using modern, multi-core architectures. In response to this, manufacturers of traditional desktop graphics-processing units (GPUs) have evolved their architectures to create desktop and server GPGPUs (General Purpose Graphics Processing Units). These GPGPUs are quickly becoming the platform of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TELKOMNIKA (Telecommunication Computing Electronics and Control)
سال: 2019
ISSN: 2302-9293,1693-6930
DOI: 10.12928/telkomnika.v17i3.12409